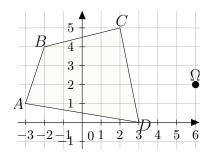
Exercices: Transformations usuelles du plan

Exercice I (translation)

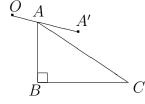
Soit t la translation de vecteur $2\vec{i} - 3\vec{j}$.


Déterminez par le calcul (puis vérifiez avec Geogebra) les images par t de :

- 1°) A(-1; 3);
- **2°**) la droite (d_1) d'équation y = 4x 1;
- **3°)** la droite (d_2) d'équation 3x + 5y + 7 = 0;
- $\mathbf{4}^{\circ}$) le cercle (C) de centre A et de rayon 4;
- 5°) le segment [AB] où B(1; -4);

Exercice II

Soit l'homothétie h de centre Ω et de rapport $\frac{1}{3}$.


- 1°) Placez le point A', image de A, en utilisant des longueurs.
- 2°) Déterminez les coordonnées de B', C' et D' par le calcul.

Exercice III

Une homothétie h de centre O transforme A en A'.

- 1°) Construisez l'image du triangle ABC par h (utilisez des propriétés de l'homothétie).
- 2°) On suppose que l'aire du triangle ABC est 6 cm² et que le rapport de l'homothétie est 2,5. Déterminez l'aire du triangle A'B'C'.

Exercice IV

Soit h l'homothétie de centre K(1; -2) et de rapport -4. Déterminez les images par h des objets définis dans l'exercice I.

Exercice V

Soit $\vec{u} \begin{pmatrix} 5 \\ -1 \end{pmatrix}$, T(-2; 5) et k = -2. Trouvez l'image du point A(-3; -2) par :

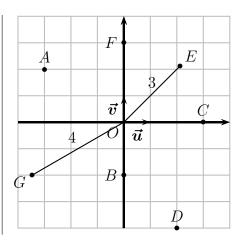
- 1°) La translation de vecteur \vec{u} suivie de l'homothétie de centre T et de rapport k?
- **2°)** L'homothétie de centre T et de rapport k suivie de la translation de vecteur \vec{u} .

Exercice VI (préparation aux réflexions)

Soient, dans un repère $(O; \vec{i}, \vec{j})$, la droite (d) d'équation 3x - y - 6 = 0 et A le point de coordonnées (3; 2).

- 1°) A appartient-il à (d)?
- **2°)** Déterminez une équation de la droite (Δ) , perpendiculaire à (d) passant par A.
- 3°) Déduisez-en les coordonnées du projeté orthogonal de A sur (d).
- 4°) Déduisez-en les coordonnées du symétrique de A par rapport à (d).

Exercice VII (réflexion)


Soit s la réflexion par rapport à la droite d d'équation x = 3y - 2. Déterminez par le calcul les images par s de :

- 1°) A(1;1);
- **2°)** B(0; 3);
- **3°)** la droite (d_1) d'équation x 3y + 1 = 0;
- **4°)** la droite (d_2) d'équation x 3y + 9 = 0;
- 5°) la droite (d_3) d'équation 3x + y 5 = 0;
- 6°) le cercle (C) de centre B et de rayon 3.

Indication : je vous conseille vivement d'utiliser Geogebra pour éviter certains calculs...

Exercice VIII (lecture graphique d'affixes)

- 1°) Donnez les affixes des points A, B, C et D sous la forme algébrique.
- **2°)** Donnez les affixes des points B, C, E, F et G sous la forme trigonométrique puis sous la forme exponentielle (on admet que $y_G = -2$).
- **3°)** Déterminez par le calcul les formes algébriques des affixes des points E et G.

Exercice IX (les trois formes d'un complexe)

1°) Complétez le tableau suivant :

Forme	Forme	Forme
algébrique	${ m trigonom\'etrique}$	exponentielle
z = -3i		
		$z = 2e^{i\frac{\pi}{3}}$
z = 2 + 2i		
	$z = 2\left(\cos\left(\frac{-2\pi}{3}\right) + i\sin\left(\frac{-2\pi}{3}\right)\right)$	
		$z = 5 e^{-i\frac{3\pi}{4}}$
$z = 3 - 3\sqrt{3}\mathrm{i}$		
$z = \sqrt{3} + i$		

2°) Comment pourrait on placer à la règle et au compas (sans utiliser ni rapporteur, ni calculatrice), le point M d'affixe $3 - 3\sqrt{3}$ i?

Exercice X (multiplication de complexes)

1°) Soient $z_1 = 3 - 2i$, $z_2 = -i$, $z_3 = -1 + 3i$ et $z_4 = \frac{\sqrt{3}}{2} - \frac{1}{2}i$. Calculez les produits suivants :

a)
$$z_1 z_2$$
 b) $z_2 z_3$ c) $z_2 z_4$
d) $z_1 z_4$ e) $z_2 z_1$ f) z_3^3

2°) Mettez z_4 sous la forme exponentielle. Déduisez-en la forme algébrique de z_4^{11} (on admettra les propriétés sur les puissances d'exponentielles).

Exercice XI (rotation autour de l'origine O)

1°) Soit A le point de coordonnées (4; 1).

Déterminez les images de A par les rotations autour de O d'angles respectifs (faîtes une figure pour contrôler vos réponses) :

a) 180° b) 100 gr c)
$$-45^{\circ}$$

d) $-\frac{5\pi}{6}$ e) 250 gr f) $\frac{7\pi}{4}$

2°) Déterminez l'image de A par 14 rotations successives de -30° autour de O.

Exercice XII (rotation autour du point quelconque)

Soit A le point de coordonnées (4; 1).

Déterminez les images de A par les rotations (faîtes une figure pour contrôler vos réponses) :

- 1°) d'angle 90° autour de B(1; -1);
- 2°) d'angle 45° autour de C(2;0);
- **3°)** d'angle -120° autour de D(-4; 2);
- **4°)** d'angle 3660° autour de E(0; 3);